Document Type: ORIGINAL RESEARCH PAPER

Authors

1 Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, Sonapur -3814, Bangladesh

2 Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Sonapur -3814, Bangladesh

3 Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Sonapur -3814, Bangladesh.

4 Assistant Professor, Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Sonapur -3814, Bangladesh

5 Institute of Soil Resource Development, Noakhali, Bangladesh

Abstract

Soil quality assessment is a significant approach for arable land, especially in a coastal region to gain a better understanding of soil productivity and effect of agricultural systems on soil resources. This study aimed to determine the quality of cultivated soil of both urban (Noakhali) and rural areas (Kabirhat and Subarnachar) of Noakhali, Bangladesh. The soil quality was evaluated as soil quality index by using 117 soil samples data, collected from three different sites within the Noakhali District. Among 14 soil parameters (total data set), only six parameters namely organic matter, Phosphorous, Boron, potassium, and iron were selected for the minimum data set, based on a combination of principal component analysis, norm values and expert opinion. Four soil quality index calculation methods, namely: linear weighted additive; linear simple additive; nonlinear weighted additive and nonlinear simple additive; were calculated based on the minimum data set. A significant positive correlations (P <0.001, P <0.05) among the four methods were observed. The soil quality of the three sampling regions followed the order of Kabirhat> Subarnachar> Noakhali indicating the better quality soil in rural areas. In Noakhali, the major contributors to soil quality were organic matter (2.94–64.85%) followed by Boron (4.69-58.22%), iron (4.77–50.00%), electrical conductivity (3.48–32.53%), phosphorous (0.36–39.44%) and potassium (1.77–27.76%) whereas in Kabirhat, Boron (31.70%) and iron (23.83%) were the major contributors, and in Subarnachar, organic matter (28.98%) contributed the most.

Graphical Abstract

Keywords

Main Subjects

Andrews, S.S.; Carroll, C.R., (2001). Designing a soil quality assessment tool for sustainable agro-ecosystem management. Ecol. Appl., 11(6): 1573–1585 (13 pages).

Andrews, S.S.; Karlen, D.L.; Cambardella, C.A., (2004). The soil management assessment framework: A quantitative soil quality evaluation method. Soil Sci. Soc. Am. J., 68(6): 1945-1962 (18 pages).

Andrews, S.S.; Karlen, D.L.; Mitchell, J.P., (2002). A comparison of soil quality indexing methods for vegetable production systems in northern California. Agric. Ecosyst. Environ., 90(1) : 25–45(21 pages).

Armenise, E.; Redmile-Gordon, M.A.; Stellacci, A.M.; Ciccarese, A.; Rubino P., (2013). Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment. Soil. Tillage. Res., 130 (2013): 91–98 (8 pages).

Askari, M.S.; Holden, N.M., (2014). Indices for quantitative evaluation of soil quality under grassland management. Geoderma. Reg., 230-231(2014): 131–142 (12 pages).

Bangladesh National Drinking Water Quality Survey (BNDWS), (2009).

Bhattacharyya, T.; Pal, D.K.; Easter, M., et al., (2007). Modelled soil organic carbon stocks and changes in the indo- Gangetic Plains, India from1980 to 2030. Agric. Ecosyst. Environ., 122(1): 84–94 (11 pages).

Bilgili, A.V.; Küçük, C.; Van Es, H.M., (2017). Assessment of the quality of the Harran Plain soils under long-term cultivation, Environ. Monit. Assess., 189(9): 460

Black, C.A.; Evans, D.D.; White, J.L.; Ensminger, L.E.; Clark, F.E., (1965). Methods of soıl analysıs. Part I. American Society of Agronomy. Inc. Publisher, Madison, Winconsin, USA.

Chen, Y.D.; Wang, H.Y.; Zhou, J.M.; Xing, L.; Zhu, B.S.; Zhao, Y.C.; Chen, X.Q., (2013). Minimum data set for assessing soil quality in farmland of northeast China. Pedosphere., 23 (5): 564–576 (13 pages).

Dong, C.Y.; Yan, W.H.; Min, Z.J.; Lu, X.; Shu, Z.B.; Cun, Z.Y.; Qin, C.X., (2013). Minimum Data Set for Assessing Soil Quality in Farmland of Northeast China, Pedosphere., 23(5): 564–576 (13 pages).

Doran, J.W.; Parkin, T.B., (1994). Defining and assessing soil quality. In: Doran, J.W.; Coleman, D.C.; Bezdicek, D.F.; Stewart, B.A., (Eds.). Defining soil quality for a sustainable environment. SSSA Special publication no. 35. ASA and SSSA, Madison., 3–21 (19 pages).

Doran, J.W.; Sarrantonio, M.; Liebig, M.A., (1996). Soil health and sustainability. Adv. Agro., 56: 1-54 (54 pages).

FAO, (2013). Soil management in the production of vegetables with good agricultural practices. Project TCP/PAR/3303. FAO, Roma.

Firdous, S.; Begum, S.; Yasmin, A., (2016). Assessment of soil quality parameters using multivariate analysis in the Rawal Lake watershed. Environ. Monit. Assess., 188 (9): 1-13 (13 Pages).

Fox, R.L.; Olsen, R.A.; Rhoades, H.F.,( 1964). Evaluating the sulfur status of soils by plant and soil tests. Soil Sci. Soc. Am. Proc., 28: 243-296 (54 pages).

Glover, J.D.; Reganold, J.P.; Andrews, P.K., (2000). Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington State. Agric. Ecosyst. Environ., 80(1-2): 29–45 (17 pages).

Guo, L.L.; Sun, Z.G.; Zhu, O.Y.; Han, D.R.; Li, F.D., (2017). A comparison of soil quality evaluation methods for Fluvisol along the lower Yellow River. Catena., 152:135–143 (9 pages).

Hartsock, N. J.; Mueller, T. G.; Thomas, G. W.; Barnhisel, R. I.; Wells, K. L.; Shearer, S. A., (2000). Soil electrical conductivity variability. In Int. conf. précis. agric., 5.

Jackson, M. L., (1958). Soil chemical analysis. Verlag: Prentice Hall, Inc., Englewood Cliffs, NJ. 1958, 498 S. DM 39.40

Karlen, D.L.; Mausbach, M.J.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E., (1997). Soil quality: a concept, definition, and framework for evaluation. Soil Sci. Soc. Am. J., 61: 4–10 (7 pages).

Krull, E. S.; Baldock, J. A.; Skjemstad, J.O., (2003). Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Funct. Plant Biol., 30(2): 207–222 (16 pages).

Lal, R., (2002). Why carbon sequestration in agricultural soils? In: Kimble, J.M.; Lal, R.; Follet, R.F., (Eds.), Agricultural Practices and Policies for Carbon Sequestration in Soil. Lewis Publ. Boca Raton, FL, USA., 21–30 (10 pages).

Larson, W.E.; Pierce, F.J., (1994). The dynamics of soil quality as a measure of sustainable management. Defining Soil Quality for a Sustainable Environment. Soil Sci. Soc. Am. Madison, Wisconsin, USA., 37–52 (16 pages).

Latrou, M.; Papadopoulos, A.; Papadopoulos, F.; Dichala, O.; Psoma, P.; Bountla, A., (2014). Determination of Soil Available Phosphorus using the Olsen and Mehlich 3 Methods for Greek Soils Having Variable Amounts of Calcium Carbonate, Commun. Soil Sci. Plant Anal., 45(16): 2207-2214 (8 pages)

Liebig, M.A.; Varvel, G.; Doran, J.W., (2001). A simple performance based index for assessing multiple ecosystem functions. Agron. Hortic. Faculty Publ., 336.

Masto, R.E.; Chhonkar, P.K.; Singh, D.; Patra, A.K., (2008). Alternative soil qualitynindices for evaluating the effect of intensive cropping, fertilisation and manuringmfor 31 years in the semi-arid soils of India. Environ. Monit. Assess., 136(1-3): 419–435 (17 pages).

Motsara, M.R.; Roy R.N., (2008). Guide to laboratory establishment for plant nutrient analysis.

Mukherjee, A.; Lal, R., (2014). Comparison of Soil Quality Index Using Three Methods. PLoS ONE., 9(8): e105981.

Nell, J.P.; van Huyssteen, C.W., (2014). Soil Classification Groups to Quantify Primary Salinity, Sodicity and Alkalinity in South African Soils. S. Afr. J. Plant Soil., 31(3): 117-125 (9 pages).

Ngo-Mbogba, M.; Yemefack, M.; Nyeck, B., (2015). Assessing soil quality under differ-ent land cover types within shifting agriculture in South Cameroon. Soil Tillage Res., 150: 124–131 (8 Pages).

Ortega, R., (2015). An Essential Tool for Nutritional Diagnosis and Integrated Nutrition Management. Red Agrícola, Octubre. 78-82 (5 Pages).

Ouhadi, V. R.; Goodarzi, A. R., (2007). Factors impacting the electro conductivity variations of clayey soils. Iran. J. Sci. Technol., 31(B2): 109.

Page, A.L.; Miller, R.H.; Kenney, D.R., (1982). Methods of Soil Analysis, part 2. American Soc. Agron., 43(1): 68-70 (3 Pages).

Peraza, J.G.R.; Gasca, E.P.; Corrales, R.L.; Medina, J.R.; Terrones, Y.B.; Sosa, L.E.A.; Mata, A.E.R.; Enciso, T.O., (2017). Robust Soil Quality Index for Tropical Soils Influenced by Agricultural Activities, J. Agri. Chem. Environ., 6: 199-221 (23Pages)

Petersen, L., (2010).  Analytical methods of soil, water, plant material and fertilizer. Soil Resour. Dev. Inst., 2: 17-70 (54 Pages).

Piper, C.S., (1950). Soil and Plant Analysis. Adelaide Univ. Hassel Press, Australia.

Raiesi, F., (2017). A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecol. Indic., 75: 307–320 (14 Pages).

Rangel-Peraza, J.G.; Padilla-Gasca, E.; López-Corrales, R.; Medina, J.R.; Bustos-Terrones, Y.; Amabilis-Sosa, L.E.; Rodríguez-Mata, A.E.; Osuna-Enciso, T., (2017). Robust Soil Quality Index for Tropical Soils Influenced by Agricultural Activities. J. Agric. Chem. Environ., 6: 199-221 (3 Pages).

Ray, S.K.; Bhattacharyya, T.; Reddy, K.R.; Pal, D.K.; Chandran, P.; Tiwary, P., et al.,( 2014). Soil and land quality indicators of the Indo-Gangetic Plains of India. Curr. Sci., 107(9): 1470–1486 (17 Pages).

Rezaei, S.A.; Gilkes, R.J.; Andrews, S.S., (2006). A minimum data set for assessing soil quality in rangelands. Geoderma., 136(1-2): 229–234 ( 6 Pages).

Schollenberger, C.J.; Simon, R.H., (1945). Determination of exchange capacity and exchangeable bases in soil. Ammonium acetate method. Soil Sci., 59(1): 13-24 (12 Pages).

Shabbir, R.; Erum, S.; Khalid, S., (2014). Soil and vegetation analysis of selected roadside green belts in Rawalpindi city, Pak. Int. Res. J. Biol. Sci.,  3(3): 89–98 (10 Pages).

Shekhovtseva, O.G.; Maltseva, I.A., (2015). Physical, Chemical, and Biological Properties of Soils in the City of Mariupol, Ukraine. Eurasian Soil Sci., 48(12): 1393-1400 (8 Pages).

Shukla, M.K.; Lal, R.; Ebinger, M., (2006). Determining soil quality indicators by factor analysis. Soil Tillage Res., 87(2): 194–204 (11 Pages).

Soil Research Development Institute (SRDI) (2018).

Walkley, A.; Black, C.A., (1934). An examination of Degtjareff method for determining soil organic matter and proposed modification for the chromic acid titration method. Soil Sci., 37(1): 29-38 (10 Pages)

Wall, D.H.; Nielsen, U.N.; Six, J., (2015).  Soil biodiversity and human health. Nature., 528(7580):  69–76(8 Pages).

Wang, X.J.; Gong, Z.T., (1998). Assessment and analysis of soil quality changes after eleven years of reclamation in subtropical China. Geoderma., 81: 339–355 (17 Pages).

Xu, M.X.; Liu. G.B.; Zhao, Y. G., (2005). Assessment indicatorsof soil quality in hilly Loess Plateau. Chin. J. Appl. Ecol. (in Chinese). 16(2): 1843–1848(6 Pages).

Yemefack, M.; Jetten, V.G.; Rossiter, D.G., (2006). Developing a minimum data set for characterizing soil dynamics in shifting cultivation systems. Soil .Tillage. Res., 86(1): 84–98 (15 Pages).

Yu, P.; Liu, S.; Zhang, L.; Li, Q.; Zhou, D., (2018). Selecting the minimum data set and quantitative soil quality indexing of alkaline soils under different land uses in northeastern China, Sci. Total. Environ., 616–617; 564–571 (8 Pages).

Zhang, G.; Bai, J.; Xi, M.; Zhao, Q.; Lu, Q.; Jia, J., (2016). Soil quality assessment of coastal wetlands in the Yellow River Deltaof China based on the minimum data set. Ecol. Indic., 66: 458–466 (9 Pages).

Zhang, X.; Wang, Q.; Gilliam, F.S.; Wang, Y.; Cha, F., (2014). Spatial Variation in Carbon and Nitrogen in Cultivated Soils in Henan Province, China: Potential Effect on Crop Yield. PLoS One., 9(10): e109188

 

 

 

HOW TO CITE THIS ARTICLE

 

Debi, S.R.; Bhattacharjee, S.; Aka, T.D.; Paul, S.C.;  Roy, M.C.; Salam, M.A.; Islam, Md. S.;  Azady, A.R., (2019). Soil quality of cultivated land in urban and rural area on the basis of both minimum data set and expert opinion. Int. J. Hum. Capital Urban Manage., 4(4): …, …