Document Type: ORIGINAL RESEARCH PAPER

Author

Laboratory of plant physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran

Abstract

ABSTRACT: Overall plant growth and microbial biomass can be effected by dust accumulation. The chloroform fumigation-extraction method was used to evaluating the effect of cement dust pollution emitted from Kurdistan cement factory on soil microbial biomass carbon. Chlorophyll content (a, b and total) of plants species was measured in different distance from cement factory. Microbial biomass C (Cmic) amounts ranged from 0.138 to 1.102 mg/g soils in the polluted sites and from 0.104 to 1.283 mg/g soils in the control area. Soils polluted with alkaline cement dust resulted in meaningful reduction in Cmic levels compared to control soils. Pearson correlation coefficients (r) show Cmic was positively correlated to soil CaCO3 content (r = 0.09). Cmic/Corg ratio was 2.54 and 1.92 in the control and cement polluted sites, respectively. Reduction in this ratio can be resulted from soil degradation in cement polluted soils. A significant decrease in the Cmic/Corg ratio in cement dust-polluted soils illustrated that this factor can be applied as a good indicator of soil quality. In the case of chlorophyll content of plant species, maximum reduction of total chlorophyll for Triticum aestivum L. was 45% compared to Hordeum vulgare L. with 60%. Therefore, results show higher sensitivity of H.vulgare than to T. aestivum.

Graphical Abstract

Keywords

Main Subjects

Alavi, M., (2015). Experimental effects of sand-dust storm on tolerance index, percentage phototoxicity and chlorophyll a fluorescence of Vigna radiata L, Proc. Int. Acad. Ecol. Environ. Sci., 5(1): 5-16 (12 pages). 

Alavi, M.; Sharifi, M.; Karimi, N., (2014). Response of chlorophyll a fluorescence, chlorophyll content, and biomass to dust accumulation stress in the medicinal plant, Plantago lanceolata L, Iran. J. Plant Physiol., 4: 1055-1060 (6 pages).

Alavi, M.; Sharifi, M.; Karimi, N., (2016). Simulated dust storm effect on dry mass, chlorophylls a, b and chlorophyll fluorescence of C 3 (Triticum aestivum L.) and C 4 (Zea mays L.) plants, Biharean Biol., 10(2): 113-117 (5 pages).

Arnon, D. I., (1949). Copper enzymes in isolated chloroplasts. polyphenol oxidase in Vulgaris, Plant Physiol., 24(1): 1-15 (15 pages).

Bacmaga, M.; Kucharski, J.; Wyszkowska, J., (2015). Microbial and enzymatic activity of soil contaminated with azoxystrobin, Environ. Monit. Assess, 187(10): 1-15 (15 pages).

Bardgett, R. D.; Freeman, C.; Ostle, N. J., (2008). Microbial contributions to climate change through carbon cycle feedbacks, ISME J., 2: 805-814 (10 pages).

Bilen, S. (2010). Effect of cement dust pollution on microbial properties and enzyme activities in cultivated and no-till soils, Afr. J. Microbiol. Res, 4(22): 2418-2425 (8 pages).

Chen, L.; Flynn, D.F.B.; Jing, X.; Kuhn, P., Scholten, T.; He, J.S., (2015). A Comparison of Two Methods for Quantifying Soil Organic Carbon of Alpine Grasslands on the Tibetan Plateau, PLoS One, 10(5): e0126372.

Cheng, F.; Peng, X.; Zhao, P.; Yuan, J.; Zhong, C.; Cheng, Y.; Cui, C.; Zhang, S., (2013). Soil Microbial Biomass, Basal Respiration and Enzyme Activity of Main Forest Types in the Qinling Mountains, PLoS One, 8(6): e67353.

Ceisler, J.D.; Newville, T. M.; Chen, F., Clark, B.C.; Schneegurt, M.A., (2012). Bacterial Growth at the High Concentrations of Magnesium Sulfate Found in Martian Soils, Astrobiol., 12(2): 98-106 (9 pages).

Dhal, B.; Thatol, H.N.; Das, N.N.; Pandey, B.D., (2013). Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review, J. Hazard. Mater., 250: 272-291 (20 pages).

Dou, X.; He, P.; Cheng, X.; Zhou, W., (2016). Long-term fertilization alters chemically-separated soil organic carbon pools: Based on stable C isotope analyses, Sci. Rep, 6: 19061.

Felsmann, K.; Baudis, M.; Gimbel, K.; Kayler, Z.E.; Ellerbroock, R.; Bruehlheide, H.; Bruckhoff, J.; Welk, E.; Puhlmann, H.; Weiler, M.; Gessler, A.; Ulrich, A., (2015). Soil Bacterial Community Structure Responses to Precipitation Reduction and Forest Management in Forest Ecosystems across Germany, PLoS One, 10(4): e0122539.

Garcia-Orenes, F.; Morugan-Coronado, A.; Zornoza, R.; Cerda, A.; Scow, K., (2016). Correction: Changes in Soil Microbial Community Structure Influenced by Agricultural Management Practices in a Mediterranean Agro-Ecosystem, PLoS One, 8(11): e0152958.

Gougoulias, C.; Clark, J.M.; Shaw, L.J., (2014). The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems, J. Sci. Food Agr, 94(12): 2362-2371 (10 pages).

Janssens, I.A.; Dieleman, W.; Luyssaert, S.; Subke, J.A.; Reichstein, M., Ceulemans, R.; Ciais, P.; Dolman, A.J.; Grace, J.; Matteucci, G.; Papale, D., Piao, S.L.; Schulze, E.D.; Tang, J.; Law, B.E., (2010). Reduction of forest soil respiration in response to nitrogen deposition, Nat. Geosci., 3(5): 315-322 (8 pages).

Jin, Q.; Bethke, C.M., (2003). A New Rate Law Describing Microbial Respiration, Appl. Environ. Microbiol, 69(4): 2340-2348 (9 pages).

Kara, O.; Babur, E.; Altun, L.; Seyis, M., (2016). Effects of afforestation on microbial biomass C and respiration in eroded soils of Turkey, J. Sustainable For., 35(6): 385-396 (12 pages).

Kara, Ö.; Bolat, İ., (2007). Impact of alkaline dust pollution on soil microbial biomass carbon, Turk. J. Agric. For., 31(3): 181-187 (7 pages).

Karimi, N.; Alavi, M., (2016). Arsenic contamination and accumulation in soil, groundwater and wild plant species from Qorveh County, Iran. Biharean Biol., 10(2): 69-73 (5 pages).

Kooch, Y.; Moghimian, N.; Bayranvand, M.; Alberti, G., (2016). Changes of soil carbon dioxide, methane, and nitrous oxide fluxes in relation to land use/cover management, Environ. Monit. Assess, 188(6): 1-12 (12 pages).

Koschke, L.; Lorz, C.; Furst, C.; Glaser, B.; Makeschin, F., (2011). Black Carbon in Fly-Ash Influenced Soils of the Dübener Heide Region, Central Germany. Water Air Soil Pollut., 214(1-4): 119-132 (14 pages).

Langer, U.; Gunther, T., (2001). Effects of alkaline dust deposits from phosphate fertilizer production on microbial biomass and enzyme activities in grassland soils, Environ. Pollut., 112(3): 321-327 (7 pages).

Li, X.; Chen, Z., (2004). Soil microbial biomass C and N along a climatic transect in the Mongolian steppe, Biol Fert Soils, 39(5): 344-351 (8 pages).

Liu, C.W.; Sung, Y.; Chen, B.C.; Lai, H.Y., (2014). Effects of Nitrogen Fertilizers on the Growth and Nitrate Content of Lettuce (Lactuca sativa L.), Int. J. Environ. Res. Public Health, 11(4): 4427-4440 (14 pages).

Liu, N.; Zhang,Y.; Chang, S., Kan, H.; Lin, L., (2012). Impact of Grazing on Soil Carbon and Microbial Biomass in Typical Steppe and Desert Steppe of Inner Mongolia. PLoS One, 7(5): e36434.

Llorente, M.; Turrion, M.B., (2010). Microbiological parameters as indicators of soil organic carbon dynamics in relation to different land use management, Eur. J. For. Res., 129(1): 73-81 (9 pages).

Lu, M.; Xie, J.; Wang, C.; Guo, J.; Wang, M.; Liu, X.; Chen, Y.; Chen, G.; Yang, Y., (2015). Forest conversion stimulated deep soil C losses and decreased C recalcitrance through priming effect in subtropical China, Biol. Fertil. Soils, 51(7): 857-867 (11 pages).

Luo, X.; Fu, X.; Yang, Y.; Cai, P.; Peng, S.; Chen, W.; Huang, Q., (2016). Microbial communities play important roles in modulating paddy soil fertility, Sci. Rep, 6: 20326.

Margesin, R.; Minerbi, S.; Schinner, F., (2014). Long-Term Monitoring of Soil Microbiological Activities in Two Forest Sites in South Tyrol in the Italian Alps. Microbes Environ, 29(3): 277-285 (9 pages).

Moorhed, D.L.; Rinkes, Z.L.; Sinsabaugh, R.L.; Weintraub, M.N., (2013). Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models, Front. Microbiol., 4: 1-12 (12 pages).

Mooshammer, M.; Wanek, W.; Zechmeiser-Boltenstern, S.; Richter, A., (2014). Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources, Front Microbiol, 5: 1-10 (10 pages).

Mostajeran, A.; Gholaminejad, A.; Asghari, G., (2014). Salinity alters curcumin, essential oil and chlorophyll of turmeric (Curcuma longa L.), Res. Pharm. Sci., 9(1): 49-57 (9 pages).

Österreicher-Cunha, P.; Amaral- Vargas, J.R.E.D.; Santos-Antunes, F.D.; Bechara-Mothe, G.P.; Davee-Guimaraes, J.R.; Costa-Coutinho, H.L., (2012). Influence of soil and climate on carbon cycling and microbial activity of a heterogeneous tropical soil, Geomicrobiol. J., 29(5): 399-412 (14 pages).

Paoli, L.; Guttova, A.; Grassi, A., Lackovicova, A.; Senko, D.; Loppi, S., (2014). Biological effects of airborne pollutants released during cement production assessed with lichens (SW Slovakia), Ecol. Indic., 40: 127-135 (9 pages).

Prajapati, S.K.; Tripathi, B.D., (2008). Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution, J. Environ. Qual., 37(3): 865-870 (6 pages).

Pun, V.C.; Yu, I.T.S.; Ho, K.F.; Qiu, H.; Sun, Z.; Tian, L., (2014). Differential Effects of Source-Specific Particulate Matter on Emergency Hospitalizations for Ischemic Heart Disease in Hong Kong, Environ. Health Perspect., 122(4): 391-396 (6 pages).

Salama, H.M.H.; Al-Rumaih,  M.M.; Al-Dosary, M.A., (2011). Effects of Riyadh cement industry pollutions on some physiological and morphological factors of Datura innoxia Mill. plant, Saudi J. Biol. Sci., 18(3): 227-237 (11 pages).

Schindlbacher, A.; Borken, W.; Djukic, I.; Brandstatter, C.; Spotl,  C.; Wanek, W., (2015). Contribution of carbonate weathering to the CO2 efflux from temperate forest soils, Biogeochemistry, 124: 273-290 (18 pages).

Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T.A., (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1).

Shentu, J.L.; He, Z.L.; Yang, X.E.; Li, T.Q., (2008). Microbial activity and community diversity in a variable charge soil as affected by cadmium exposure levels and time. J. Zhejiang Univ. Sci. B, 9(3): 250-260 (11 pages).

Vargas, R.S.; Bataiolli, R., Da Costa, P.B.; Lisboa, B; Passaglia, L.M.P.; Beneduzi, A.; Vargas, L.K., (2015). Microbial quality of soil from the Pampa biome in response to different grazing pressures, Genet. Mol. Biol, 38(2): 205-212 (8 pages).

Westerhoff, P., Mezyk, S.P., Cooper, W.J.; Minakata, D., (2007). Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee River fulvic acid and other dissolved organic matter isolates, ‎ Environ. Sci. Technol., 41(13): 4640-4646 (7 pages).

Zia-Khan, S.; Spreer, W.; Pengnian, Y.; Zhao, X.; Othmanli, H.; He, X.; Muller, J., (2014). Effect of dust deposition on stomatal conductance and leaf temperature of cotton in northwest China, Water, 7(1): 116-131 (16 pages).