Department of Environmental Engineering, School of Environment, College of Engineering, University of Tehran, Tehran, Iran


BACKGROUND AND OBJECTIVES: Rainwater in the city of Tehran is regarded as a freshwater source; however, because of highly polluted air conditions, the rainwater quality could be seriously affected. Therefore, the treatment of it could be an attractive topic for assessment. The purpose of the present study was to treat Tehran rainwater by employing photoelectrocatalytic methods as one of the most powerful treatment methods. Also, this study aimed to find an easy laboratory procedure to create various redox environments and to assess a protocol for the release of metals.
METHODS: The photoelectrocatalytic process was achieved by using a photocatalyst (Titanium dioxide) as the photoanode for the treatment of Tehran rainwater.  Sodium ascorbate was used as a reducing modifier to assess the effect of various redox potentials on the performance of the photoelectrocatalytic process.
FINDING: The positive redox potential, the 6 centimeter gap, and the sodium chloride concentration of o.65 g/L resulted in a considerable increase of the chemical oxygen demand, iron, manganese and lead removals. On the other hand, the negative redox potential, the 12 cm gap, and the sodium chloride concentration of o.65 g/L led to a noticeable increase in the removal of zinc. By employing the speciation and Pourbaix diagrams, the removal mechanisms of the PEC process were investigated. Chemical oxygen demand, iron and manganese by oxidation, lead, zinc and cadmium by precipitation were removed. Also, based on the cluster analysis, it was found that redox potential, dissolved oxygen and pH had a strong relationship.
CONCLUSION: This work provided evidence that the redox potential could be regarded as a critical parameter helping to better estimate the risks associated with the polluted sites.

COPYRIGHTS: ©2021 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.


Main Subjects

Ab Aziz, N.A.B.; Palaniandy, P.; Abdul Aziz, H.; Aljuboury, D.A.D., (2018). Use of photocatalysis for conversion of harvested rainwater as an alternative source into drinking water. Global Nest. J., 20(2): 243-256 (14 pages).

Agarwal, S.K., (2009). Heavy metal pollution. Vol. 4. APH publishing.

ALabdeh, D.; Karbassi, A.R.; Omidvar, B.; Sarang, A., (2019). Speciation of metals and metalloids in Anzali Wetland, Iran. Int. J. Environ. Sci. Technol., 1-14 (14 pages).

Bai, Y.; Feng, X.; Xing, H.; Xu, Y.; Kim, B.K.; Baig, N.; Zimmerman, S.C., (2016). A highly efficient single-chain metal–organic nanoparticle catalyst for alkyne–azide “click” reactions in water and in cells. J. Am. Chem. Soc., 138(35): 11077-11080 (4 pages).

Barrera-Díaz, C.; Cañizares, P.; Fernández, F.J.; Natividad, R.; Rodrigo, M.A., (2014). Electrochemical advanced oxidation processes: an overview of the current applications to actual industrial effluents. J. Mex. Chem. Soc., 58(3): 256-275 (20 pages).

Berardo, A.; De Maere, H.; Stavropoulou, D.A.; Rysman, T.; Leroy, F.; De Smet, S., (2016). Effect of sodium ascorbate and sodium nitrite on protein and lipid oxidation in dry fermented sausages. Meat Sci., 121: 359-364 (6 pages).

Biati, A.; Karbassi, A.R.; Hassani, A.H.; Monavari, S.M.; Moattar, F., (2010). Role of metal species in flocculation rate during estuarine mixing. Int. J. Environ. Sci. Technol., 7(2): 327-336 (10 pages).

Biswal, H.J.; Vundavilli, P.R.; Gupta, A., (2019). Investigations on the effect of electrode gap variation over pulse-electrodeposition profile. IOP Conf. Ser.: Mater. Sci. Eng., 653(1): 012046 (7 pages).

Chatain, V.; Sanchez, F.; Bayard, R.; Moszkowicz, P.; Gourdon, R., (2005). Effect of experimentally induced reducing conditions on the mobility of arsenic from a mining soil. J. Hazard. Mater., 122(1-2): 119-128 (10 pages).

Chen, X.; Huang, G.; Wang, J., (2013). Electrochemical reduction/oxidation in the treatment of heavy metal wastewater. J. Metall. Eng (ME)., 2(4) (4 pages).

Cheng, L.; Liu, S.; He, G.; Hu, Y., (2020). The simultaneous removal of heavy metals and organic contaminants over a Bi2WO6/mesoporous TiO2 nanotube composite photocatalyst. RSC Adv., 10(36): 21228-21237 (10 pages).

Chimonyo, W.; Corin, K.C.; Wiese, J.G.; O'Connor, C.T., (2017). Redox potential control during flotation of a sulphide mineral ore. Miner. Eng., 110: 57-64 (8 pages).

Chowdhury, P.; Elkamel, A.; Ray, A.K., (2014). Photocatalytic processes for the removal of toxic metal ions. Heavy Metals Water., 25-43 (19 pages).

Deng, Y., (1997). Effect of pH on the reductive dissolution rates of iron (III) hydroxide by ascorbate. Langmuir, 13(6): 1835-1839 (5 pages).

El Jamal, M.M., (2008). Experimental E-pH diagrams of Fe (III)/Fe (II) system in presence of variable concentration of different ligands. J. Chem. Technol. Metall., 43(1): 129-138 (10 pages).

Ensaldo-Rentería, M.K.; Ramírez-Robledo, G.; Sandoval-González, A.; Pineda-Arellano, C.A.; Álvarez-Gallegos, A.A.; Zamudio-Lara, Á.; Silva-Martínez, S., (2018). Photoelectrocatalytic oxidation of acid green 50 dye in aqueous solution using Ti/TiO2-NT electrode. J. Environ. Chem. Eng., 6(1): 1182-1188 (7 pages).

Haratifar, S.; Bazinet, L.; Manoury, N.; Britten, M.; Angers, P., (2011). Impact of redox potential electrochemical modification and storage conditions on the oxidation reaction prevention in dairy emulsion. Dairy Sci Technol., 91(5):541-554 (14 pages).

Herbel, M.J.; Suarez, D.L.; Goldberg, S.; Gao, S., (2007). Evaluation of chemical amendments for pH and redox stabilization in aqueous suspensions of three California soils. Soil Sci. Soc. Am. J., 71(3): 927-939 (13 pages).

Igbinosa, I.H.; Aighewi, I.T., (2017). Assessment of the physicochemical and heavy metal qualities of rooftop harvested rainwater in a rural community. Glob Chall., 1(6): 1700011 (7 pages).

Jin, P.; Chang, R.; Liu, D.; Zhao, K.; Zhang, L.; Ouyang, Y., (2014). Phenol degradation in an electrochemical system with TiO2/activated carbon fiber as electrode. J. Environ. Chem. Eng., 2(2): 1040-1047 (8 pages).

Johnson, R.A.; Wichern, D.W., (2002). Applied multivariate statistical analysis. Upper Saddle River, NJ: Prentice hall. 5(8).

Karbassi, A.R.; Monavari, S.M.; Bidhendi, G.R.N.; Nouri, J.; Nematpour, K., (2008(a)). Metal pollution assessment of sediment and water in the Shur River. Environ. Monit. Assess., 147(1-3): 107 (10 pages).

Karbassi, A.R.; Nouri, J.; Mehrdadi, N.; Ayaz, G.O., (2008(b)). Flocculation of heavy metals during mixing of freshwater with Caspian Sea water.  Environ. Geol., 53(8): 1811-1816 (6 pages).

Karbassi, A.R.; Torabi, F.; Ghazban, F.; Ardestani, M., (2011). Association of trace metals with various sedimentary phases in dam reservoirs. Int. J. Environ. Sci. Technol., 8(4): 841-852 (12 pages).

Khan, A.; Zou, S.; Wang, T.; Ifthikar, J.; Jawad, A.; Liao, Z.; Chen, Z., (2018). Facile synthesis of yolk shell Mn2O3@ Mn5O8 as an effective catalyst for peroxymonosulfate activation. Phys. Chem. Chem. Phys., 20(20): 13909-13919 (11 pages).

Komtchou, S.; Delegan, N.; Dirany, A.; Drogui, P.; Robert, D.; El Khakani, M.A., (2020). Photo-electrocatalytic oxidation of atrazine using sputtured deposited TiO2: WN photoanodes under UV/visible light. Catal. Today., 340: 323-333 (11 pages).

Le, A.T.; Pung, S.Y.; Sreekantan, S.; Matsuda, A., (2019). Mechanisms of removal of heavy metal ions by ZnO particles. Heliyon., 5(4): e01440 (27 pages).

Li, B.; Bishop, P.L., (2004). Oxidation–reduction potential changes in aeration tanks and microprofiles of activated sludge floc in medium‐and low‐strength wastewaters. Water Environ. Res., 76(5): 394-403 (10 pages).

Li, B.; Bishop, P., (2002). Oxidation-reduction potential (ORP) regulation of nutrient removal in activated sludge wastewater treatment plants. Water Sci. Technol., 46(1-2): 35-39 (5 pages).

Li, X.Z.; Liu, H.S., (2005). Development of an E-H2O2/TiO2 photoelectrocatalytic oxidation system for water and wastewater treatment. Environ. Sci. Technol., 39(12): 4614-4620 (7 pages).

Litter, M.I., (2015). Mechanisms of removal of heavy metals and arsenic from water by TiO2-heterogeneous photocatalysis. Pure Appl. Chem., 87(6): 557-567 (11 pages).

Liu, L.; Li, R.; Liu, Y.; Zhang, J., (2016). Simultaneous degradation of ofloxacin and recovery of Cu (II) by photoelectrocatalysis with highly ordered TiO2 nanotubes. J. Hazard. Mater., 308: 264-275(12 pages).

Montenegro-Ayo, R.; Morales-Gomero, J.C.; Alarcon, H.; Cotillas, S.; Westerhoff, P.; Garcia-Segura, S., (2019). Scaling up photoelectrocatalytic reactors: a TiO2 nanotube-coated disc compound reactor effectively degrades acetaminophen. Water., 11(12): 2522 (14 pages).

Nadaska, G.; Lesny, J.; Michalik, I., (2018). Environmental aspect of manganese chemistry. 2012. HEJ.

Pareuil, P.; Pénilla, S.; Ozkan, N.; Bordas, F.; Bollinger, J.C., (2008). Influence of reducing conditions on metallic elements released from various contaminated soil samples. Environ. Sci. Technol., 42(20): 7615-7621 (7 pages).

Park, H.; Vecitis, C.D.; Hoffmann, M.R., (2009). Electrochemical water splitting coupled with organic compound oxidation: the role of active chlorine species. J. Phys. Chem. C., 113(18): 7935-7945 (11 pages).

Qin, Y.; Li, Y.; Tian, Z.; Wu, Y.; Cui, Y., (2016). Efficiently visible-light driven photoelectrocatalytic oxidation of As (III) at low positive biasing using Pt/TiO2 nanotube electrode. Nanoscale Res. Lett., 11(1): 1-13 (13 pages).

Seibert, D.; Zorzo, C.F.; Borba, F.H.; de Souza, R.M.; Quesada, H.B.; Bergamasco, R.; Inticher, J.J., (2020). Occurrence, statutory guideline values and removal of contaminants of emerging concern by electrochemical advanced oxidation processes: a review. Sci. Total Environ., 141527  (35 pages).

Sharififard, H.; Ghorbanpour, M.; Hosseinirad, S., (2018). Cadmium removal from wastewater using nano-clay/TiO2 composite: kinetics, equilibrium and thermodynamic study. AET., 4(4): 203-209 (7 pages).

Smith, M.V.; Pierson, M.D., (1979). Effect of reducing agents on oxidation-reduction potential and the outgrowth of clostridium botulinum type E spores. Appl. Environ. Microbiol., 37(5): 978-984 (7 pages).

Su, X.; Kushima, A.; Halliday, C.; Zhou, J.; Li, J.; Hatton, T.A., (2018). Electrochemically-mediated selective capture of heavy metal chromium and arsenic oxyanions from water. Nat. Commun., 9(1): 1-9 (9 pages).

Subramaniam, M.N.; Goh, P.S.; Lau, W.J.; Ismail, A.F., (2019). The roles of nanomaterials in conventional and emerging technologies for heavy metal removal: a state-of-the-art review.  Nanomaterials., 9(4): 625 (32 pages).

Vahidhabanu, S.; Stephen, A.J.; Ananthakumar, S.; Ramesh Babu, B., (2015). Effect of ruthenium oxide/titanium mesh anode microstructure on electrooxidation of pharmaceutical effluent. Int. J. Waste Resour., 5(191): 2 (5 pages).

Wahyuni, E.T.; Aprilita, N.H.; Hatimah, H.; Wulandari, A.M.; Mudasir, M., (2015). Removal of toxic metal ions in water by photocatalytic method. Chem. Sci. Int. J., 194-201 (8 pages).

Wang, Q.; Shang, J.; Zhu, T.; Zhao, F., (2011). Efficient photoelectrocatalytic reduction of Cr (VI) using TiO2 nanotube arrays as the photoanode and a large-area titanium mesh as the photocathode. J. Mol Catal. A: Chem., 335(1-2): 242-247 (6 pages).

Williams, J.L., (2006). An electrolytic technique to study the mobility of inorganic constituents in soils and waste materials (Doctoral dissertation) (165 pages).

Wilschefski, S.C.; Baxter, M.R., (2019). Inductively coupled plasma mass spectrometry: introduction to analytical aspects. Clin Biochem. Rev., 40(3): 115.

Yao, J.; Mei, Y.; Xia, G.; Lu, Y.; Xu, D.; Sun, N.; Chen, J., (2019). Process optimization of electrochemical oxidation of ammonia to nitrogen for actual dyeing wastewater treatment. Int. J. Environ. Res. Public Health., 16(16): 2931 (13 pages).

Yao, Y.W.; Cui, L.H.; Li, Y.; Yu, N.C.; Dong, H.S.; Chen, X.; Wei, F., (2015). Electrocatalytic degradation of methyl orange on PbO2-TiO2 nanocomposite electrodes. Int. J. Environ. Res., 9(4): 1357-1364 (8 pages).

Yurdakal, S.; Çetinkaya, S.; Şarlak, M.B.; Özcan, L.; Loddo, V.; Palmisano, L., (2020). Photoelectrocatalytic oxidation of 3-pyridinemethanol to 3-pyridinemethanal and vitamin B3 by TiO2 nanotubes. Catal. Sci. Technol., 10(1): 124-137 (6 pages).

Zarei, E., (2019). A strategy for degradation of 2, 5-dichlorophenol using its photoelectrocatalytic oxidation on the TiO2/Ti thin film electrode. Iran. J. Catal., 9(2): 99-108 (10 pages).

Zarei, E.; Ojani, R., (2017). Fundamentals and some applications of photoelectrocatalysis and effective factors on its efficiency: a review. J. Solid State Electrochem., 21(2): 305-336 (31 pages).

Zhao, X.; Guo, L.; Hu, C.; Liu, H.; Qu, J., (2014). Simultaneous destruction of Nickel (II)-EDTA with TiO2/Ti film anode and electrodeposition of nickel ions on the cathode. Appl. Catal., B., 144: 478-485 (8 pages).

Zhou, X.; Zheng, Y.; Zhou, J.; Zhou, S., (2015). Degradation kinetics of photoelectrocatalysis on landfill leachate using codoped TiO2/Ti photoelectrodes. J. Nanomater., (12 pages).

Zou, X.; Sun, Z.; Hu, Y.H., (2020). G-C3N4-based photoelectrodes for photoelectrochemical water splitting: a review. J. Mater. Chem. A., (30 pages).


International Journal of Human Capital in Urban Management (IJHCUM) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in IJHCUM should be sent to the editorial office of IJHCUM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.