Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran


BACKGROUND AND OBJECTIVES: One of the short-term strategies to manage the traffic and make a balance between travel supply and demand for the near future is the short-term prediction of traffic parameters and informing the passengers. Therefore passengers are more likely to avoid traveling during traffic peak hours. In this study, hourly average traffic speed and hourly traffic volume as two traffic parameters that indicate traffic state are predicted for Karaj-Chaloos road in Iran.
METHODS: Since traffic data have large volume, machine learning-based models have more suitable performance than traditional models. However, it is not merely possible to discover the cause and effect relationships and the importance of features. In this study, after using the artificial neural network and K-nearest neighbor models to predict traffic parameters, to analyze the sensitivity of the results, the importance of used features is investigated. Also, the effect of passing the time over the accuracy of predictions has been examined.
FINDINGS: According to the results, the highest accuracy of predicting hourly traffic volume and hourly average traffic speed is achieved by the K-nearest neighbor that is equal to 61% and 91%, respectively.
CONCLUSION: Compared to the historical average as a benchmark model, a significant improvement in the accuracy of predictions has been obtained by the artificial neural network and K-nearest neighbor models.


Main Subjects

Alsolami, B.; Mehmood, R.; Albeshri, A., (2020). Hybrid statistical and machine learning methods for road traffic prediction: Rev. Tutorial Smart Infrastruct. Appl., 115-133 (19 pages).

Azad, A.K.; Akhter, S.; Hossain, R., (2019). A smart travel time prediction model for urban traffic using long short-term memory networks. In Int. Conf.  Eng. Res. Pra. (iCERP 2019) (8 pages).

Bai, J.; Chen, Y., (2019). A deep neural network based on classification of traffic volume for short-term forecasting. Math. Probl. Eng., (10 pages).

Bratsas, C., Koupidis, K., Salanova, J.M., Giannakopoulos, K., Kaloudis, A., Aifadopoulou, G. (2020). A comparison of machine learning methods for the prediction of traffic speed in urban places. Sustainability, 12(1): 142 (15 pages).

Campbell, J.; Thompson, S., (2005). Predicting the equity premium out of sample: Can anything beat the historical average? Nat. Bur. Eco. Res. (NBER).

Chang, L.Y., (2005). Analysis of freeway accident frequencies: negative binomial regression versus artificial neural network. In Saf. Sci., 43: 541-557 (17 pages).

DANIEL, G., (2013). Principles of artificial neural networks, World Scientific (361 pages).

Davenport, T.H.; Barth, P.; Bean, R., (2012). How big data is different, MIT Sloan Manage. Rev.

Do, L.N.; Vu, H.L.; Vo, B.Q.; Liu, Z.; Phung, D., (2019). An effective spatial-temporal attention based neural network for traffic flow prediction. In Transportation Research Part C: Emerg. Technol., 108: 12-28 (17 pages).

Dunne, S.; Ghosh, B., (2013). Weather adaptive traffic prediction using neurowavelet models. IEEE. trans. Intell. Transp. Syst., 14(1): 370-379 (10 pages).

Elevitch, C.R.; Johnson JR, C.R., (2020). A procedure for ranking parameter importance for estimation in predictive mechanistic models. Ecol. Modell., 419: 108948 (12 pages).

Ferguson, E., (2018). Travel demand management and public policy, Routledge.

Hogema, J.H., (1996). Effects of rain on daily traffic volume and on driving behaviour (No. TNO-TM-96-8019) (18 pages).

Hossain, M.; Abufardeh, S., (2019). A new method of calculating squared Euclidean distance (SED) using p tree technology and its performance analysis. CATA., 45-54 (10 pages).

Ibrahim, M.; Louie, M.; Modarres, C.; Paisley, J. (2019). Global explanations of neural networks: Mapping the landscape of predictions. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, 279-287 (9 pages).

Jia, R., Jiang; P., Liu, L.; Cui, L.; Shi, Y., (2018). Data driven congestion trends prediction of urban transportation. IEEE Internet Things J., 5: 581-591 (11 pages).

Karlafits, M. G.; Vlahogianni, E. I., (2011). Statistical methods versus neural networks in transportation research: Differences, similarities and some insights. In Transp. Res. Part C Emerg. Technol., 19: 387-399 (13 pages).

Koesdwiady, A.; Soua, R.; Karray, F., (2016). Improving traffic flow prediction with weather information in connected cars: A deep learning approach. IEEE. Trans. Veh., 65(12): 9508-9517 (10 pages).

Li, L.; Qin, L., Qu; X., Zhang, J.; Wang, Y.; Ran, B., (2019). Day-ahead traffic flow forecasting based on a deep belief network optimized by the multi-objective particle swarm algorithm. Knowl-based Syst., 172: 1-14 (14 pages).

Li, W.; Wang, J.; Fan, R.; Zhang; Y.; Guo; Q.; Siddique, C; Ban, X.J., (2020). Short-term traffic state prediction from latent structures: Accuracy vs. efficiency. In Transp. Res. Part C Emerg. Technol., 111: 72-90 (19 pages).

Luo, X.; Li, D.; Yang, Y.; Zhang, S., (2019). Spatiotemporal traffic flow prediction with KNN and LSTM. J. Adv. Transport., (10 pages)

Makridakis, S.; Hibon, M., (1997). ARMA models and the Box–Jenkins methodology. J. Forecast, 16: 147-163 (17 pages).

Miller, H.J., (2017). Theories and models in transportation planning, the geography of urban transportation, 113-174 (62 pages).

Moreira, C.; Sindhgatta, R.; Ouyang, C.; Bruza, P.; Wichert, A., (2020). an investigation of interpretability techniques for deep learning in predictive process analytics. arXiv preprint arXiv:2002.09192 (15 pages).

Naderpour, H.; Rafiean, A.H.; Fakharian, P., (2018). Compressive strength prediction of environmentally friendly concrete using artificial neural networks. J. Build. Eng., 16: 213-219 (7 pages).

Neath, R.C.; Johnson, M.S., (2010). Discrimination and classification, in Peterson, P., Baker, E., and McGaw, B. B. T.-I. E. of E. (Third E. (eds). Oxford: Elsevier)., 135-141 (6 pages).

Raj, J.; Bahuleyan, H.; Vanakakshi, L.D., (2016). Application of data mining techniques for traffic density estimation and prediction. In Transp. Res. Proc., 17: 321-330 (10 pages).

Rasaizadi A, Askari M., (2020) Effect of family structure on urban areas modal split by using the life cycle concept. International Journal of Human Capital in Urban Management. Int. J. human. capital. urban manage., (12 pages).

Ren, S.; Yang, B.; Zhang, L.; Li, Z., (2018). Traffic speed prediction with convolutional neural network adapted for non-linear spatio-temporal dynamics.  In Proceedings of the 7th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, 2018. 32-41 (10 pages).

Sharmila, R.B.; Velaga, N.R., (2020). Mode-Wise Corridor Level Travel-Time Estimation Using Machine Learning Models. J. Soft Comput. Civ. Eng., 4(1): 72-97 (26 pages).

Shen, J.; Li, W., (2013). Sensitivity analysis of wavelet neural network model for short-term traffic volume prediction. J. Appl. Math., (10 pages).

Singhal, A.; Gopalakrishnan, K.; Khaitan, S.K; (2017). Predicting Budget from transportation research grant description: An exploratory analysis of text mining and machine learning techniques. J. Soft Comput. Civ. Eng., 1(2): 89-102 (14 pages).

Song, Y.; Wang, X.; Wright, G.; Thatcher, D.; Wu, P.; Felix, P., (2018). Traffic volume prediction with segment-based regression kriging and its implementation in assessing the impact of heavy vehicles. In IEEE trans. Intell. Transp. Syst., 20: 232-243 (12 pages).

Tan, H.; Wu, Y.; Shen, B.; Jin, P.J; Ran, B., (2016). Short-term traffic prediction based on dynamic tensor completion. In IEEE trans. Intell. Transp. Syst., 17: 2123-2133 (11 pages).

Tang, J.; Liu, F.; Zou, Y.; Zhang, W.; Wang, Y., (2017). An improved fuzzy neural network for traffic speed prediction considering periodic characteristics. IEEE. trans. Intell. Transp. Syst., 18: 2340-2350 (11 pages).

Vlahogianni, E.I.; Golias, J.C.; Karlafits, M.G., (2004). Short‐term traffic forecasting: Overview of objectives and methods. Transp. Rev., 24: 533-557 (25 pages).

Wang, J.; Chen, R.; He, Z., (2019). Traffic speed prediction for urban transportation network: A path based deep learning approach. In Transp. Res. Part C Emerg. Technol., 100: 372-385 (14 pages).

Wu, Y.j.; Chen, F.; Lu, C.T.; Yang, S., (2016). Urban traffic flow prediction using a Spatio-temporal random effects model. In IEEE trans. Intell. Transp. Syst., 20: 282-293 (12 pages).

Wu, Y.; Tan, H.; Qin, L.; Ran, B.; Jiang, Z., (2018). A hybrid deep learning-based traffic flow prediction method and its understanding. Transp. Res. Part C Emerg. Technol., 90: 166-180 (15 pages).

Zhao, J.; Gao, Y.; Tang, J.; Zhu, L.; Ma, J., (2018). Highway travel time prediction using sparse tensor completion tactics and-nearest neighbor pattern matching method. J. Adv. Transp., (16 pages).

Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Deng, M.; Li, H., (2019). T-gcn: A temporal graph convolutional network for traffic prediction. In IEEE trans. Intell. Transp. Syst., (11 pages).

Zhu, D.; Shen, G.; Liu, D.; Chen, J; Zhang, Y., (2019). FCG-as predictor: An approach for the prediction of average speed of road segments with floating car GPS data. Sensors, 19: 4967 (21 pages).

Ziebart, B.D.; Ratlife, N.; Gallagher, G.; Mertz, C.; Peterson, K.; Bagnell, J.A.; Hebert, M.; Dey, A.K.; Srinivasa, S., (2009). Planning-based prediction for pedestrians.  International Conference on Intelligent Robots and Systems, 2009. IEEE, 3931-3936 (6 pages).